Subgradient Projection Algorithm with Computational Errors

Alexander J. Zaslavski (The Technion - Israel Institute of Technology)

17-Feb-2021, 06:00-07:00 (5 years ago)

Abstract: We study the subgradient projection algorithm for minimization of convex and nonsmooth functions, under the presence of computational errors. We show that our algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution can be obtained and how many iterates one needs for this.

optimization and control

Audience: researchers in the topic


Variational Analysis and Optimisation Webinar

Series comments: Register on www.mocao.org/va-webinar/ to receive information about the zoom connection.

Organizers: Hoa Bui*, Matthew Tam*, Minh Dao, Alex Kruger, Vera Roshchina*, Guoyin Li
*contact for this listing

Export talk to